system design & management

Balancing Usability and Cybersecurity in IoT Devices

MITsdm

MIT SDM Systems Thinking Webinar Series

system design & management

MITsdm

Saurabh Dutta, Director of Experience Design, Rapid7

Tod Beardsley, Director of Research, Rapid7

Background- Saurabh Dutta

4 Years
DESIGN &
ARCHITECTURE

12 Years

USABILITY & EXPERIENCE DESIGN/

10 Years in CYBER SECURITY

Background- Tod Beardsley

7 Years
NETWORK AND
SYSTEM
ENGINEERING

14 Years

SECURITY ENGINEERING, RESEARCH, AND DEVELOPMENT

Today's Webinar Agenda

- IoT market overview
- Usability-Security Paradox
- Need of IoT Security Framework
- Stakeholder Analysis
- Usability/ Functionality Analysis
- Security Analysis Today's Primary Focus
- Application Today's Primary Focus

Internet of Things (IoT) Market Overview

Consumer

- Gartner predicts by 2020, IoT technology will be in 95% of electronics for new product designs
- Bain predicts consumer applications will generate \$150B by 2020
- Wearables including medical devices, smart home technologies are at the forefront

Enterprise

- Gartner predicts by 2020,
 more than 65% of enterprises
 will adopt IoT products
- Discrete Manufacturing,
 Transportation and Logistics,
 and Utilities will lead all
 industries in IoT spending by
 2020, averaging \$40B each
- Improving customer
 experiences (70%) and safety
 (56%) are the two areas
 enterprises are using IoT
 solutions most often today.

Today's Webinar Agenda

- loT market overview
- Usability-Security Paradox
- Need of IoT Security Framework
- Stakeholder Analysis
- Usability/ Functionality Analysis
- Security Analysis
- Application

Usability Security Paradox

The Internet of Things, that system of web-enabled devices that can talk to one another, has brought people a wealth of benefits, from quick rides via Uber to the ability to remotely control the heat levels in our homes. But are these devices compromising our privacy—or even our safety?

Usability Security Paradox

As per a study by distil networks, when CAPTCHA was present, people were on average 27% less likely to continue to the content.

Another experiment with 61 users showed how usability gets degraded with better security in 2 factor authentication over single factor

Usability Security Paradox

Insulin pump with always on bluetooth sensor

Today's Webinar Agenda

- IoT market overview
- Usability-Security Paradox
- Need of IoT Security Framework
- Stakeholder Analysis
- Usability/ Functionality Analysis
- Security Analysis
- Application

Antagonistic to Synergistic...

At first glance, it will always look like security and usability are antagonistic, but a deeper analysis suggests that by setting good practices, patterns and principles, security and usability can be improved synergistically

Good practices, patterns, principles example

Usability Pattern

- Copy and Paste
- Drag and Drop

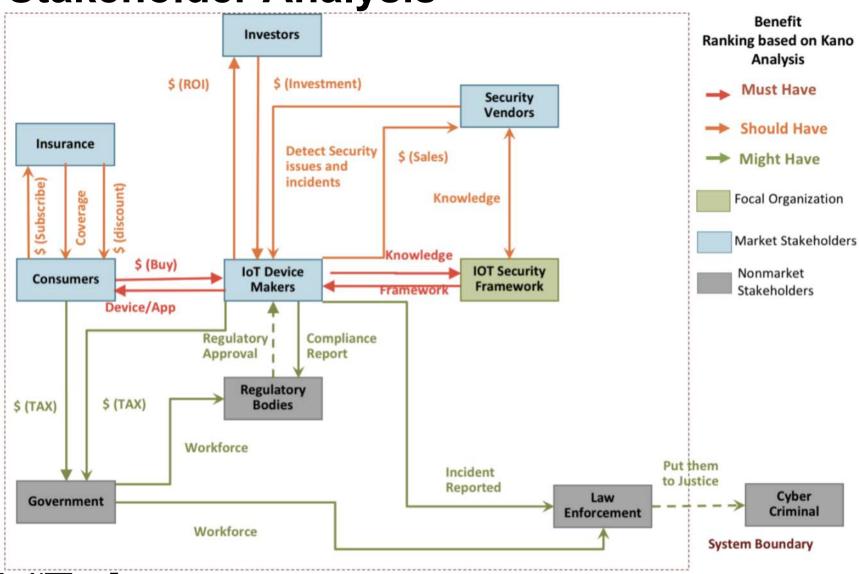
Security Pattern

- Using the Secure Socket Layer (SSL) to "wrap" clear text protocols
- Email-Based Identification and Authentication for resetting passwords

Good practices, patterns, principles

IoT Security Framework

But 1st, who is it for?



Today's Webinar Agenda

- IoT market overview
- Usability-Security Paradox
- Need of IoT Security Framework
- Stakeholder Analysis
- Usability/ Functionality Analysis
- Security Analysis
- Application

Stakeholder Analysis

Stakeholder Analysis

Role: Product manager/ Developer of IoT device maker

Goal: Need to ship new features and make product successful commercially

Problem: Needs to understand the security implications to feature requests before implementation

Solution: IoT framework makes the persona aware of potential security issues and better protect the company from releasing products that introduce unanticipated risks to their customers.

How: IoT security framework can be used to compare various designs to come up with the optimized option which does justice to both functionality and security.

Today's Webinar Agenda

- IoT market overview
- Usability-Security Paradox
- Need of IoT Security Framework
- Stakeholder Analysis
- Usability/ Functionality Analysis
- Security Analysis
- Application

Usability as Functional Product Requirement

At a high level, any product has two types of requirements:

- Functional requirements specify what the system should do.
- Non-Functional requirements specify how the system works or how the system should behave.

Usability is degree of ability of anything to be used and is generally a non-functional requirement

General Usability Attributes

Efficiency

Effectiveness

Productivity

Satisfaction

Learnability

Safety

Trustfulness

Accessibility

Universality

Usefulness

Based on Quality in Use Integrated Measurement (QUIM)

Today's Webinar Agenda

- loT market overview
- Usability-Security Paradox
- Need of IoT Security Framework
- Stakeholder Analysis
- Usability/ Functionality Analysis
- Security Analysis Today's Primary Focus
- Application

Common Vulnerabilities and Exposures: What can go wrong?

Confidentiality

Protection of information, especially when shared over a publicly accessible medium such as air for wireless

For example, hackers can get access to home monitoring camera and use that to blackmail

Integrity

Involves the protection of data and make sure that no unauthorized modifications occur.

Integrity on protection of sensor data is crucial for designing reliable and dependable IoT applications.

Availability

Specific to IoT, ensures that information is available when required.

For example, in a smart home denial-of-service (DoS) attack can make the device run out of battery and eventually unavailable

Interviewed and surveyed 20 security professionals with IoT experience

+

OWASP IoT Project literature

Physical Security

Making sure people, property, surrounding environment and the device itself is not harmed in case of accident or attack.

This is a defining attribute for IoT security.

Remote Control

WiFi (wireless networking), BLE (Bluetooth Low Energy), NFC (near field communications), and many other standards that all operate in RF (radio frequency spectrum) are used in IoT devices widely for ease of use.

Maintenance

It is critical for IoT devices to allow for regular maintenance including patching and upgrades.

IoT often fails at this.

Authentication

Authentication involves the mutual verification of peers before they share information and ensures the data's origin and destination is accurate.

Authorization

Authorization consists of access policies that explicitly assign certain permissions to subjects: users, endpoints, and the like.

Input Validation

"Thou shalt not trust user-supplied input."

This is a common source for classic programming errors.

Sanitization

Once validated, input from users and sensors is sanitized to ensure that the system is operating with expected, correct, and useful data.

Transport Security

Adjacent to authentication, transport security ensures that only the intended subjects can read or modify data in transit.

This is nearly always a job for cryptography.

Sensitive Data

If a device stores and transmits PII (Personally identifiable information), collect passwords, or handles any similar data that can be misused, it is dealing with sensitive data.

Data Storage

Secure data storage involves preventing unauthorized people from accessing it as well as preventing accidental or intentional destruction or corruption of information

Encryption

All things being equal, data should neither be stored or transmitted "in the clear." Cryptographic standards ensure that data cannot be altered without evidence, nor read by unauthorized endpoints.

Logging

loT devices need to know when their services are accessed, who is making the service request, when the request is happening

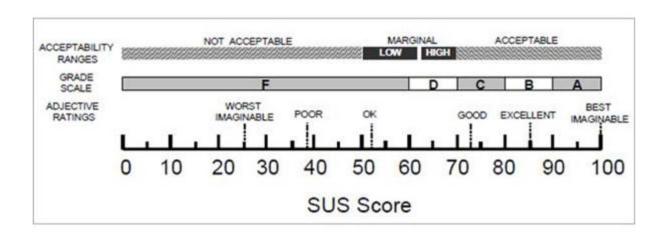
Auditability

In case of an attack or accident, error investigation is crucial to understand what went wrong so that it can be prevented from causing further damage and reoccurrence

Logging

Logging services are critical for not only troubleshooting and maintenance, but can also be the last line of defense when it comes to feature abuse and system compromise

Transparency

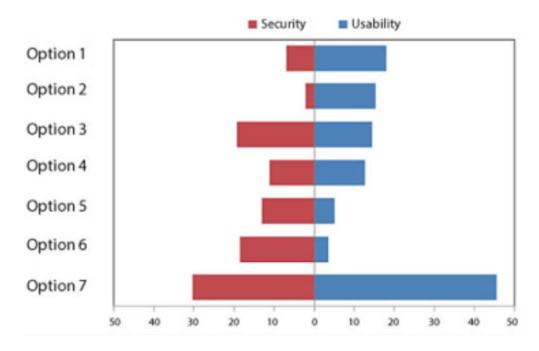

While it may not be practical for a completely open source model for every feature and application, software should be reviewable by an independent auditor

Today's Webinar Agenda

- IoT market overview
- Usability-Security Paradox
- Need of IoT Security Framework
- Stakeholder Analysis
- Usability/ Functionality Analysis
- Security Analysis
- Application Today's Primary Focus

The System Usability Scale (SUS) provides a "quick and dirty", reliable tool for measuring the usability. It consists of a 10-item questionnaire and evaluates a wide variety of products and services, including hardware, software, mobile devices, websites and applications.

Proposing- System Security Scale...



System Security Question	Affects (C,I,A)	Improvement Recommendation	Security Attributes	
Is it impossible for the feature to affect the health and safety of people or property?	availability	Provide safety guarantees for failure conditions	Physical Security	
Does the feature require a local, physical interface to access it?	availability	Lock down all control and data input interfaces	Remote Control	
Can authorized users or devices patch or update the feature in the future?	integrity	Build and maintain a patch / update service	Maintenance	
Can only authenticated, authorized users or devices access the feature?	availability confidentiality	Construct and enforce authentication and authorization policies	Authentication Authorization	
Is all received data automatically inspected and validated?	availability integrity	Validate all input	Sanitization Input Validation	

System Security Question	Affects (C,I,A)	Improvement	Security
Are data transmissions encrypted and mutually authenticated?	confidentiality integrity	Recommendation Use secure transport techniques	Attributes Transport Security Authentication Encryption
Does the feature avoid storing personally identifying information, tokens, or passwords?	confidentiality integrity	Be deliberate and careful with secure storage of credentials	Sensitive Data
Is any stored data only accessible after authentication by an authorized user or device?	availability confidentiality	Consider encrypting data at rest	Data Storage Encryption Authorization
Does the feature routinely log use and errors in a way that authorized users can inspect the logs?	logging integrity	Store log data securely	Auditability Error Investigation
Is the source code available for inspection by a third party?	integrity	Adopt open source principals where appropriate	Transparency Auditability

Future work- Imagine a quantitative metric that can be verbally stated in the form of the ubiquitous blood pressure rate. For instance, 70/85 or seventy over eighty-five would signify that both security and usability levels are high using the scores from, System usability scale score and System security scale score



Application 2- Security- Usability QFD to set priorities

Application 2- Security- Usability QFD to set priorities

Operate remotely

Easy interface

long lasting battery on single charge

Discreet operation

extra drug storage

Water proof

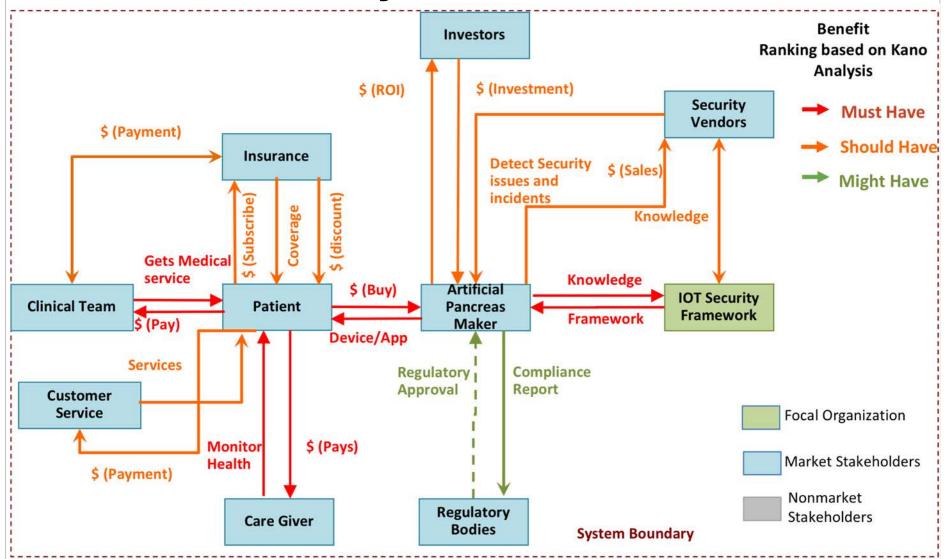
Easy to carry device

Instant Notification

Easy access to logs and trends

Similar to previous pump design

In this example, based on importance % score, top 3 security attributes that needs to be taken care of are the following:


- 1. Physical security
- 2. Transport security
- Remote control

Appendix

Stakeholder Analysis- Artificial Pancreas

Functional Usability Attributes- Artificial Pancreas

Functional Usability Features	Stakeholder Priorities						
	Patients	Doctors	Caregivers	Customer Service	Sum	Avg. Priority 1-5, 5 being highest	QUIM Most relevant attribute
Easy to carry device	2	? 7	6	9	24	2	Efficiency, Accessibility
Operate remotely	4	. 1	2	. 1	8	5	Productivity, Efficiency
Easy interface	3	3	1	5	12	5	Satisfaction, Efficiency
long lasting on single charge, peace of mind	5	5 4	. 7	. 2	18	4	safety, Trustfulness
Instant Notification	8	8	3	6	25	2	Safety, Usefulnes
extra drug storage	7	. 2	. 4	. 8	21	3	Productivity, Safety
Discreet operation	1	6	5	7	19	4	Satisfaction
Easy access to logs and trends	10	9	10	3	32	1	Learnability, Universality
Similar to previous pump design	9	10	9	10	38	1	Learnability
Water proof	6	5 5	8	4	23	3	Trustfulness, Effectiveness

Based on Quality in Use Integrated Measurement (QUIM)