system design &
- management

Chris Miyachi
Systems Engineer
Xerox Corporation

SDM 2000

In Systems Architecture with Professor
Crawley way back in 2001

* He asked us to come up with a list of principles we learned
about System Architecture

« 99 percent of us, including me, regurgitated exact wording
of principles we learned in the class.

* One or two brilliant classmates thought up their own
principles

* Now 15 years later, | hope to come up with some of my own
principles after gestating on what I learned during my time
as an SDM student.

l\/” |Sdm eeeeeeee ip, Innovation, Systems Thinking

Outline

 What is “over-engineering™?

« Concrete examples

« What is over-engineering in software?

- Software examples

 |s over-engineering good or bad?

* How to avoid the over-engineering pitfalls
* Principles for getting it right

|\/|| |Sdm Leadership, Innovation, Systems Thinking

My boss said to me the other day....

« “S/he over-engineered it”

« He was referring a set of requirements that were so overly
defined that it crippled our ability to extend and further

design the system.
— Many of the requirements didn’t matter

- So was s/he at fault? Was s/he a bad/unskilled engineer?

l\/” |Sdm eeeeeeee ip, Innovation, Systems Thinking

Every | 1 ne of code 1 s
maintained out of weakness, and deleted by

W

c h a n &e@an*Paul Sartre - Programming in ANSI C.

« Every requirement written comes with a huge price
— Code to implement
— Test tools to test
— Test procedure to write
— Test procedure to execute

— Requirement to explain to other people implementing the
system

|\/|| |Sdm Leadership, Innovation, Systems Thinking

DEFINITIONS

|\/|| |Sdm Leadership, Innovation, Systems Thinking

Over-engineering definition

« Qverengineering (or over-engineering) is the designing of a
product to be more robust or complicated than is necessary for its
application, either (charitably) to ensure sufficient factor of safety,
sufficient functionality, or because of design errors.

— https://en.wikipedia.org/wiki/Overengineering
* |n Software:

— When you make your code more flexible or sophisticated than it
needs to be

— Logic: make a design more flexible so it can be used to solve future
needs.

« The dictionary:
— “over” (meaning “too much”)
— “engineer” (meaning “design and build”).
— designed or built too much.

l\/|| |Sdm Leadership, Innovation, Systems Thinking

https://en.wikipedia.org/wiki/Overengineering

Under-engineering

- When | am learning a new area, | tend to under-engineer — just
get something working

« When experience, over-engineering creeps in as you have the
experience to see all the “what ifs”.
« And yet one of the principles of the Agile Manifesto is:

— Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.
(http://agilemanifesto.org/principles.html)

* Right-engineering is difficult.
— "Make it work first" is important to reach success.

— Right-engineering is the application of good development strategies
rather then pure coding skill.

— Adopt strategies that increase the chances of finding that balance.

l\/|| | Sdm Leadership, Innovatio

ion, Systems Thinking

http://agilemanifesto.org/principles.html

What Makes Right Engineering?

* The ability to predict the future

« The wise engineer is able to foresee the future
consequences of their design
— Sometimes they get it right
— Sometimes they don'’t
— Luck is involved

« Therefore better off building only what is needed today
— But you could miss an opportunity!

— Sometimes you can change a system when it has been
released

l\/” |Sdm eeeeeeee ip, Innovation, Systems Thinking

CONCRETE EXAMPLES

|\/|| |Sdm Leadership, Innovation, Systems Thinking

Examples

"Tile Arch System," a technique
for constructing self-supporting,
interlocking terracota tiles to form
arches and architectural vaults.

Leadership, Innovation, Systems Thinking 11

Were Roman Arches over-engineered?
« Agueducts are dramatically stronger than needed to carry a
stream of drinking water
— loading is self-weight of the structure itself
— some are still resisting lateral earthquake loads
« Little understanding solid mechanics
— rules of thumb what loads they could take from experience
 Ignorant for safety loads but had:
— experience and intuition
— High levels of craft

— Slave labor
- Led to conservative design.

— Low Efficiency

|\/|| |Sdm Leadership, Innovation, Systems Thinking

Form precedes function

https://en.wikipedia.org/wiki/Big_Duck

Ml |Sdm ‘ Leadership, Innovation, Systems Thinking

13

Function follow Form

* “Form follows function”
— American architect, Louis Sullivan (born in Boston)
— the style of architecture should reflect its purpose,

— made sense at the time, and continued to do so for much of
the last century, not just for buildings, but objects too.

 Digital Products
— Ipod
— Smart Phone

l\/ll | Sdm Leadership, Innovation, Systems Thinking 14

SOFTWARE EXAMPLES

|\/|| |Sdm Leadership, Innovation, Systems Thinking

Single Responsibility Principle

Every class should have a single responsibility over a part
of the function

« The function-part should be encapsulated and the class
should do that and only that.

« Class or module should have one, and only one, reason to
change

« Does following this prevent over-engineering?
— If your partitioning is perfect
 Web Page Example

l\/” |Sdm eeeeeeee ip, Innovation, Systems Thinking

Buy versus Write-Yourself Falls

« Rational Rose Real Time
— Model and code generation
— We had a manager that gave us time to refactor the code

See http://ronjeffries.com/xprog/articles/refactoring-not-on-the-backloqg/

l\/ll |Sdm ‘ Leadership, Innovation, Systems Thinking 17

http://ronjeffries.com/xprog/articles/refactoring-not-on-the-backlog/

We Over-Engineer Things Sometimes for
Good Reason

Seasoned professional

finclude
High School / Junior High ginclude
10 PRINT "HELLO WORLD" class string
20 END { .
private:
. . int size;
First Year in College char *ptr;
program Hello (input, output) public:
begin stringi) size(0), ptrinew char{'\0")}) [}
writeln('Hello World') string(const string &s) : size(s.size)
end. {
ptr = new char[size + 1];
Senior Year in College Stropy (PtE, S.ptrl;
(defun hello ! . .
(print ~stringi)
(cons "Hello (list "World)))) {
delete [] ptr;
- }
NEHUlDerESSIDﬁE' friend ostream Soperator << (ostream &, const string &);
finclude string &operator=(const char *);
void main (wvoid) I
{ osStresm sOoperator<<(ostresm &stream, const string &s)
char *messagel[] = {"Hello ™, "World"}; I
int i;

return(stream << s.ptr);

}
for(i = 0; 1 < 27 ++i) string Lstring::operator=(const char *chrs)
printf("%s", message [i]); {

printf(™\wn"}; if (this
} {
delete [] ptr;
size = strlenichrs);
ptr = new char[size + 1];
strepyiptr, chrs);

I= gchrs)

}
returm (*this) ;
}
int maini)
{
string sStr;
str = "Hello World"™;

cout << str <« endl;
Ml lsdm
}

Interface Example

MFC Hierarchy Chart Part 2 of 3
Classes That Derive From CCmdTarget or CWnd

cobject

Application Architecture

Ml Tsdm

CCmdTarget
CommandTargets
CConnectionPoint Cocument CoocTermplate COleDatasource
‘CDocltem CHimEditDoc CsingleDocTemplate CControlDataSource
COleClientitem COleDocument cMultiDocTemplate CliemDatasource
‘COleDocObjectltem COletinkingDoc CMultiDocTemplateEx & COleDropsource.
CRichEditCtritem COleServerboc CoynLinkLibrary CMFCToolBarDropSource &
COleServertiem 3 feControlCont COleDropTarget
CDocObjectServerliem CRichEditDoc COleControlsite CMFCTabDropTarget &
CDocObjectServer CBrowserControlsite CMFCToolBarDropTarget &
CWinFormsControlSite
Window Support
Cwnd
ControlBars Controls More Controls
CBasePane & ChnimateCirl CMonthCalCtrl
CPane® Coutton COleCantrol
CDockablePane * CBitmapButton CProgressCtrl
CBaseTabbedPane & CMFCimageEditorpaletieBar & CMFCRIbbonKeyTip *
CMFCOutlookBar * CMFCButton * CRichEditCtrl

ClabbedPane %

CDockablePaneAdapter #
CMFCOutlookBarPaneAdapter &

COummyDockablePane &

CMFCTasksPane

CPaneDialog %

CMFCAutoHideBar *
CMFCBaseToolBar %

CMFCToolBar #
CMFCDropDowrToolBar %
CMFCimageEditorpaletteBar &
CMFCMenuBar *
CMFCMenuOutiookBarPane *

CMFCOtiookBarPaneList &
MFC *

COleMessageFilter
‘COleObjectFactory
COleTemplateServer
CWinThread
CWinApp.
COleControlModule
CWinAppEx

Frame Windows

CFramewnd

CFrameWndEx*
CMDICHIdWnd

Synchronization
CsyncObject
CCiticalsection
Cevent
CMitex
Csemaphore
Windows Sockets
Chsyncsocket
CSocket

Propert; ts (Tab Dialog Boxes)

CPropertySheet
CMFCColorPropertySheet %
CMFCPropertySheet *

CBitmapButton *
CMFCColorButton *
CMFCDeskiopAlertWidButton %
CMFCLinkCtrl %
CMFCMenuButton
CMFCOutlookBarScrollButton *
CMFCTabButton *

CMFCColorPickerCtri
CMFCImagePaintArea *
CMFCToolBarButtonsListButton *
CsplitButton

CComboBox

CComboBoxEx
CMFCFontComboBox *
DateTi

CMFCPopupMenuBar +
CMFCRibbonPanelMenuBar %
CMFCPrintPreviewToolbar
CMFCTasksPaneToolBar *
CMFCCaptionBar &
CMFCReBar %
CMFCRibbonBar %
CMFCRibbonStatusBar &
CMFCStatusBar &
CDocksite
CAutoHideDockSite #
CPaneDivider
CcontrolBar
CDialogBar
COleResizeBar
CReBar
CstatusBar
ClooiBar
CReBarCirl
CRichEditCtr!
CscroliBar
csiiderctrl
CStatusBarcri
ClooiBarcirl

CDateTimeCtilmpl *
CMFCToolBarDateTimeCtrilmpl
Cedit
CMFCACceleratorKeyAssignCirl %
CMFCToolBarComboBoxEdit *
CMFCEditBrowseCtrl %
CMFCToolBarEditCirl
CVSListBoxEditCtri *
CMFCMaskedEdit %
CNetAddressCirl
CHeaderctrl
CMFCHeaderCirl %
CHtmIEditCiriBase
CHtmIEditCHr]
CHotKeyCtrl
CIPAddressCiil
cLinkctrl
ClistBox
CCheckListBox
CMFCToolBarsListCheckBox &
CDragListBox
CMFCPropertySheetListBox &
CMFCRibbonCom mandsListBox #
CMFCToolBarsCommandsListBox ¥
CPagercirl
cListcl
CMFCLSICHrT *
CMFCShellListCtrI %
CMFCBaseTabCtri+
CMFCTabCirl %
CMFCPropertySheetTabCtri %
CMFCOutlookBarTabCirl %
CMFCPreviewCirlimpl ¢
CMFCPropertyGridCir %
CMFCPropertyGridToolTipCtrl

CMFCRibboNRIchEAITCIrI %
CspinButtonCirl
CMFCSpinButtonCrl %
CMFCRIBboNSpinButtonCrl &
CStatic
CVsListBoxBase &
CVsListBox &
CVSToolsListBox %
CrabCtri
CloalTipctrl
CMFCToolTipCtrl
Clreectrl
CMFCShellTreeCtrl %
CWinFormsCrl

Dialog Boxes
CDialog
CCommonbialog
CColorDialog
CFileDialog
CFolderPickerDialog &
CFindReplaceDialog
CFontDialog
COleDialog
COleBusyDialog
COleChangelconDialog
COleChangeSourceDialog
COleConvertbialog
COlelnsertDialog
COleLinksDialog
COleUpdateDialog
COlePasteSpecialDialog
COlePropertiesDialog
CPageSetupDialog
CPrintDialog
CDialogEx *
CMFCColorDialog %
CMFCDesktopAlertDialog *
CMFCimageEditorDialog *
CMFCKeyMapDialog %

CMFCRibbonKeyboardCustomizeDialog *

COHtmIDialog
CMultiPageDHtmIDialog

CMFCToolBarButtonCustomizeDialog %

CMFCToolBarNameDilog %

CMFCWindowsManagerDialog %

Windows Forms

CWinformsDialog

CMDIChIAWndEx % CMFCRibbonCustomizeDialog
CMDIFrameWnd CMFCToolBarsCustomizeDialog *
CMDIFrameWndEx
Socket Support
CMiniFramewnd
CsocketWind
CMFCDropDownFrame *
CMFCPopupMenu % support for Docking
CsmantDockingGroupGuidesWind %
CMFCColorPopupMenu
CsmanDockingHighlighterWid %
CMFCDropDOWNLIStBOX &

CsmartDockingStandaloneGuideWnd *
CMFCRibbonPanelMenu %

CMFCRiBbonMiniToolBar & Views
COleChtrframeWnd
CCtlView
COleChirFrameWndEx *
CEditview
COlelPFrameWnd
CListiiew
COleDocIPFrame *
CRichEditView
COleDoclPFrameWndEx*
ClieeView
COlelPFrameWndEx &
CScrollView
CMDIClentAreaWnd % cromi
CMFCDeskiopAlertWid %
P CDaoRecordView
CPaneFrameWind
CHEmEditView
CMultiPaneFrameWnd *
CHEmIView
CMFCTasksPaneFrameWind * e
CSmariDockingHighlighterWnd %
COleDBRecordView
CSplitterwWnd
CPreviewView
CsplitterWndex *
ChreviewViewkx k.
Property Pages ClabView &

Colepropertypage

CPropertyPage
CMFCCustomColorsPropertyPage %
CMiFCPropertyPage &
CMFCRiBbonCustomize
CMFCRIBbonCustomizePropertyPage *
CMFCStandardColorsPropertyPage
CMFCToolBarsCommandsPropertyPage %
CMFCToolBarsKeyboardPropertyPage *
CMFCToolBarsListPropertyPage *
CMFCToolBarsMenuPropertyPage *
CMFCToolBarsOptionsPropertyPage
CMFCToolBarsToolsPropertyPage %
CMFCMousePropertyPage *

CWinFormsView

Legend

@ Visual C++ 2010 adds new classes to the Microsoft Foundation Class Library.
New classes are indicated with a diamond.

 The Version 9.0 Feature Pack adds new classes to the Microsoft Foundation Class Library.
New classes are indicated with a star.

Managers, Control Support and Helper classes all provide logical and data support for
individual controls or groups of controls.

Managers have the word “Manager in their name. They typically aggregate and coordinate
functionality that would otherwise be handled by individual classes. Control Support classes
usually provide logical and data support for indiidual controls

© Microsoft Corporaton. Al Rights Reserved

Leadership, Innovation, Systems Thinking

19

SO WHAT TO DO?

|\/|| |Sdm Leadership, Innovation, Systems Thinking

Some standard solutions to prevent over-

engineering

Principle
« KISS (Keep It Simple)

* YAGNI (You Aren’t Gonna
Need It)

— Feature Creep
* Prevent Software Bloat

« Consider not adding
extensibility for future
behavior

— Minimize the configurable
options

* Design for more re-use
* Buy over build

Ml Tsdm

But...

If you have a complex system, you
may need a complex solution

You may need it in the future

No buts here — have the courage
to keep it clean

Darn, you found out you really
needed that robustness

Darn, you didn’t need that after all

You could be stuck with what you
bought

‘ Leadership, Innovation, Systems Thinking

Okham’s Razor

« Simplicity is preferred to complexity
- “Entities should not be multiplied without necessity”
— William of Ockham

« “Nature operates in the shortest way possible”
— Aristotle

« “Everything should be made as simple as possible, but not
simpler”
— Albert Einstein
* Results in a cleaner purer design

l\/” |Sdm eeeeeeee ip, Innovation, Systems Thinking

Horror Vacul

* Atendency to favor filling blank spaces with objects and
elements over leaving spaces blank or empty

 Latin for “fear of emptiness”
 Value increases

— Low cost clothing shops filled with mannequins and
merchandise versus high end with clean displays

Ml Tsdm

Search Engine Interfaces

2003 2004

Ml Tsdm

My Principles

Study Your System Over Time
— What area of the system changes the most?
 Build robustness there

Brawl/Fight in an effort not to over engineer
— The fight is a good one

— Vets your design ideas with others
Consider the future

— Use your knowledge and experience

— You may not always get it right
Have courage

— Study older systems — do software archeology
— Make mistakes

l\/|| |Sdm Leadership, Innovation, Systems Thinking

