
system design &

management

Over Engineering

Chris Miyachi

Systems Engineer

Xerox Corporation

SDM 2000

In Systems Architecture with Professor

Crawley way back in 2001

• He asked us to come up with a list of principles we learned

about System Architecture

• 99 percent of us, including me, regurgitated exact wording

of principles we learned in the class.

• One or two brilliant classmates thought up their own

principles

• Now 15 years later, I hope to come up with some of my own

principles after gestating on what I learned during my time

as an SDM student.

2

Outline

• What is “over-engineering”?

• Concrete examples

• What is over-engineering in software?

• Software examples

• Is over-engineering good or bad?

• How to avoid the over-engineering pitfalls

• Principles for getting it right

3

My boss said to me the other day….

• “S/he over-engineered it”

• He was referring a set of requirements that were so overly

defined that it crippled our ability to extend and further

design the system.

– Many of the requirements didn’t matter

• So was s/he at fault? Was s/he a bad/unskilled engineer?

4

“Every line of code is written without reason,

maintained out of weakness, and deleted by

chance”Jean-Paul Sartre - Programming in ANSI C.

• Every requirement written comes with a huge price

– Code to implement

– Test tools to test

– Test procedure to write

– Test procedure to execute

– Requirement to explain to other people implementing the

system

5

DEFINITIONS

Definitions

6

Over-engineering definition

• Overengineering (or over-engineering) is the designing of a
product to be more robust or complicated than is necessary for its
application, either (charitably) to ensure sufficient factor of safety,
sufficient functionality, or because of design errors.
– https://en.wikipedia.org/wiki/Overengineering

• In Software:
– When you make your code more flexible or sophisticated than it

needs to be

– Logic: make a design more flexible so it can be used to solve future
needs.

• The dictionary:
– “over” (meaning “too much”)

– “engineer” (meaning “design and build”).

– designed or built too much.

7

https://en.wikipedia.org/wiki/Overengineering

Under-engineering

• When I am learning a new area, I tend to under-engineer – just
get something working

• When experience, over-engineering creeps in as you have the
experience to see all the “what ifs”.

• And yet one of the principles of the Agile Manifesto is:
– Deliver working software frequently, from a

couple of weeks to a couple of months, with a
preference to the shorter timescale.
(http://agilemanifesto.org/principles.html)

• Right-engineering is difficult.
– "Make it work first" is important to reach success.

– Right-engineering is the application of good development strategies
rather then pure coding skill.

– Adopt strategies that increase the chances of finding that balance.

8

http://agilemanifesto.org/principles.html

What Makes Right Engineering?

• The ability to predict the future

• The wise engineer is able to foresee the future

consequences of their design

– Sometimes they get it right

– Sometimes they don’t

– Luck is involved

• Therefore better off building only what is needed today

– But you could miss an opportunity!

– Sometimes you can change a system when it has been

released

9

CONCRETE EXAMPLES

Hardware

10

Examples

11

"Tile Arch System," a technique

for constructing self-supporting,

interlocking terracota tiles to form

arches and architectural vaults.

Were Roman Arches over-engineered?
• Aqueducts are dramatically stronger than needed to carry a

stream of drinking water

– loading is self-weight of the structure itself

– some are still resisting lateral earthquake loads

• Little understanding solid mechanics

– rules of thumb what loads they could take from experience

• Ignorant for safety loads but had:

– experience and intuition

– High levels of craft

– Slave labor

• Led to conservative design.

– Low Efficiency

•

12

Form precedes function

13

https://en.wikipedia.org/wiki/Big_Duck

Function follow Form

• “Form follows function”

– American architect, Louis Sullivan (born in Boston)

– the style of architecture should reflect its purpose,

– made sense at the time, and continued to do so for much of

the last century, not just for buildings, but objects too.

• Digital Products

– Ipod

– Smart Phone

14

SOFTWARE EXAMPLES

Examples

15

Single Responsibility Principle

• Every class should have a single responsibility over a part

of the function

• The function-part should be encapsulated and the class

should do that and only that.

• Class or module should have one, and only one, reason to

change

• Does following this prevent over-engineering?

– If your partitioning is perfect

• Web Page Example

16

Buy versus Write-Yourself Fails

• Rational Rose Real Time

– Model and code generation

– We had a manager that gave us time to refactor the code

17

See http://ronjeffries.com/xprog/articles/refactoring-not-on-the-backlog/

http://ronjeffries.com/xprog/articles/refactoring-not-on-the-backlog/

We Over-Engineer Things Sometimes for

Good Reason

18

Interface Example

19

SO WHAT TO DO?

Solutions

20

Some standard solutions to prevent over-

engineering

Principle

• KISS (Keep It Simple)

• YAGNI (You Aren’t Gonna
Need It)
– Feature Creep

• Prevent Software Bloat

• Consider not adding
extensibility for future
behavior
– Minimize the configurable

options

• Design for more re-use

• Buy over build

But…
• If you have a complex system, you

may need a complex solution

• You may need it in the future

• No buts here – have the courage
to keep it clean

• Darn, you found out you really
needed that robustness

• Darn, you didn’t need that after all

• You could be stuck with what you
bought

21

Okham’s Razor

• Simplicity is preferred to complexity

• “Entities should not be multiplied without necessity”

– William of Ockham

• “Nature operates in the shortest way possible”

– Aristotle

• “Everything should be made as simple as possible, but not

simpler”

– Albert Einstein

• Results in a cleaner purer design

22

Horror Vacui

• A tendency to favor filling blank spaces with objects and

elements over leaving spaces blank or empty

• Latin for “fear of emptiness”

• Value increases

– Low cost clothing shops filled with mannequins and

merchandise versus high end with clean displays

23

Search Engine Interfaces

24

My Principles

• Study Your System Over Time

– What area of the system changes the most?

• Build robustness there

• Brawl/Fight in an effort not to over engineer

– The fight is a good one

– Vets your design ideas with others

• Consider the future

– Use your knowledge and experience

– You may not always get it right

• Have courage

– Study older systems – do software archeology

– Make mistakes

25

