system desngn &

Firas Glaiel

Software Engineering Tech St
Integrated Defense Systems

Raytheon

Agenda

« Context

» Agile Genome Framework

Agile Project Dynamics (APD) Model
» Experiments with the APD Model

Insights and Next Steps

I\/” | Sdm Leadership, Innovation, Systems Thinking

CONTEXT

I\/” | Sdm Leadership, Innovation, Systems Thinking

Encouraging Reports About “Agile”

The Problem Agile as a Solution?

- Traditional large-scale software * Published studies of Agile

engineerirr]lg: plan-oricc-zlnteld, show:
rocess-heavy, gated, slow,
gosuy, risk a\,ﬁrge_ — Cost decreases of 5% to 61%

- Focus on risk management — Development time decreases of
“iron triangle” of cost-scope- 24% 10 38%
schedule rather than customer — Cumulative defects decreases
satisfaction. of 11% to 83%

' E\c’egrt;;rfge&t,seefetﬁg - BUT (Important Questions)
(technology change, mission — What do people really
needs change, leadership mean by “Agile”?
change). o — Why the variations in

. got C?ew. 1982 C% Adcqg/sﬂ/on results?

tudy recommended “buy a
little, test a little” to minimize — What are management
overall exposure and risk. acquisitions options and

implications?

I\/ll |Sdm ‘ Leadership, Innovation, Systems Thinking ‘ 4

Generic DoD Acquisition Process

Omo 24 mo 48 mo 72mo 96 mo 120 mo 144 mo
PPBE Cyce ITechnoIogy Change I |Techno|ogy Change I |Techno|ogy Change | ITechnoIogy Change I ITechnoIogy Change I ITechnology Change I
PPBE Cycle FUNDING
PPBE Cycle
FPBE Qycle
PPBE Cycle
2epCovge
| PPBE Cycie |
User need Personnel =»| Personnel Personnel |_| Pr ‘?dUCt ey Personnel
identified rotation rotation rotation Delivered rotation
/ 10C FOC
Requirements Materiel Technology | Engineering & Manufacturing Production & Operations &
Development gg’a‘:";’; Development Development Deployment Support
y hngnrod ufyczrcn c;gagmry & LRIP gu&Rlate Proc: Life Cycle
stom nufactu rocess oymen
drnlgn Domontug'ctbn S Sustainment
Materiel FRP Disposal
. Post PDR PostCDR
g::r;mmom Al:ossmom Assossment O%:::"
PoOR __|POR cORm
Pre-Systems Acquisition Systems Acquisition Sustainment
91 mo from start of AoA to |IOC*
* .
. Prog ram-based Reference: Mar 2009 DSB Report Not Efficient or

Effective For DoD

- Personnel Rotation — about every 3 years L
Acquisition

- Technology Changes about every 2 years

Source: “Acquisition of Information Technology” briefing by Ronald Pontius, Dlrector Command and Control,

oush (Acguisition, rechnology & Logistics), March 20, 2012.

LTaus 2 T Y@ LIwI, u,a‘cnuo Ty

AGILE GENOME FRAMEWORK

I\/” | Sdm eeeeeeee ip, Innovation, Systems Thinking

i 0.2%

Survey of Agile Methodologies

12.3%
Scrum 10.9% ®-
Agile modeling 5'43?3%
Test-driven development (TDD) _34% 4.8% Il 2010*
: 2009*
Feature-driven development (FDD) M 3-3%
eXtreme Programming (XP) & %ﬁ
Agile data method mlﬂﬁ
Lean Development _Iizﬂ,'-g% e EQ—HEEE_E% _—
Microsoft Solutions Framework (MSF) e 2.3% 12009 — 35.4%
for Agile 1.8%
Adaptive Software Development (ASD) = 1113?35
m 0.4%
Crystal 9 305
Behavior-driven development (BDD) .g ;;f
Six Sigma ¥ IJ.IGI%

Dynamic systems development method ¥ 75,/ @)

M/LL Josamw 2010: “Water-Scrum-Fall Is The Reality Of Agile For Most Organizations 7lod'a3ﬁ dership,

Innovation, Systems Thinking

7

The Agile Genome

Feature Driven

Iterative & Incremental

(Workload Management)

Customer Involvement
Micro-Optimization

Refactoring

Continuous Integration

(Development Management)

Team Dynamics
(Soft Factors)

The ‘essence’ of Agile captured in these 7 Genes :

Gene 1: Feature driven

» Break up of project into manageable pieces of functionality:

 sometimes called “features”, “stories”, “use cases’, or
“threads”
» As opposed to functional decomposition
*The feature is a small, client-valued function.

*The final software product is the collection of all features.

” Working software over Comprehensive documentation”
Working software is the primary measure of progress

I\/” | Sdm Leadership, Innovation, Systems Thinking

. 1)
Gene 2: lterative-Incremental

Architecting system as a set of features is what allows for incremental and iterative
development.

Product
Backlog
Feature 4 Sprint Product
) Backlo
Feature 5 % 8 9) —
% § Feature 4 % Feature 2 Sprint 1
Increment
oo Feature 5 %) Feature 3 Release
X.X
Sprint
. Feat 5 .
Feature 6 Plannlng eature Sprmt 2
Feature 7 Feature 4 Increment
Feature 8
Feature 9 Daily
Feature 10 Scrum

“Working software over Comprehensive documentation”
Deliver working software frequently, from a couple of weeks
to a couple of months.

I\/” | Sdm Leadership, Innovation, Systems Thinking

Waterfall (BDUF) Walk-through

l

ul
Design Module A.n SUblfnyS,t .
Implementation P
User Interface |
Requirements J
|
Imolementatio { DB Integrated
ATM DB Desi todite 8.2 | Subsystem ATM
Requirements Requirements esign haduleiEy] Impl S/W
A Implementation
! HW Controller
Requirements
‘J | HW Controller
Design | | Impl
L 7
Analysis Requirements Specs Design Code u.T. SWIT SYS Int

I\/” | Sdm Leadership, Innovation, Systems Thinking

Agile Walk-through

ATM
Requirements

Feature 1
Check Balance

Al

Feature 2
Withdraw Cash
4

Feature 3
Deposit Check
4

Feature 4
Deposit Cash
4

| 7

Feature 5
Transfer

_'_I

Product
Backlog

Ml lsdm

Feature 1
Check Balance

Feature 2
Withdraw Cash

Sprint
Backlog

Shippable
Product
Increment

Leadership, Innovation, Systems Thinking

Gene 3: Refactoring

*An incremental process can produce sub-optimal results
compared to a waterfall model where complete up-front
design is optimized for a full-featured release.

*Many agile methodologies (in particular XP) consider
refactoring to be a primary development practice.

*Refactoring needed to pay off the “technical/design debt”

*Refactoring has the disadvantage that it takes extra effort

and requires changing the software.
*Any change has the potential to reduce maturity and stability. That’s
Reracrorive why refactoring is usually paired up with Continuous Integration.

IMPROVING THE DESIGN
oF Existivg Cope

Leadership, Innovation, Systems Thinking

Gene 4: Micro-Optimizing

“Optimizing’: teams are empowered to modify aspects of
the process or dynamically adapt to changing
circumstances.

““Micro’. small improvements and variable changes are
made frequently and as needed. E.g. team gradually figures
out how many “story points” they can handle in a time-box.

* Double-loop learning: an individual, organization or entity
is able, having attempted to achieve a goal on different
occasions, to modify the goal in the light of experience or
possibly even reject the goal.

I\/” | Sdm Leadership, Innovation, Systems Thinking

Gene 5: Customer Involvement

-Feature demos help identify rework in completed tasks: higher rework discovery rate.
-Higher frequency of user feedback reduces requirements uncertainty

Why Software Projects Fail

25.0%

23.0%

20.0%

15.0%

10.0%

5.0%

352 companies - 8,000 software projects. Source: The Standish Group, 1995

I\/” | Sdm Leadership, Innovation, Systems Thinking

Gene 6: Team Dynamics

*Schedule pressure at the end of each iteration leads to
higher work intensity. Short iterations means schedule
pressure happens more frequently

* Higher frequency of communication increases the rate of
gaining experience and reduces time to discover rework.

*Practices such as pair programming reduce defects
(increased fraction correct and complete)

*Experience Gain / Learning :
* Project learning
« Process learning ©
« People learning ®

® @

I\/” | Sdm Leadership, Innovation, Systems Thinking

Gene 7: Continuous Integration

«Software Configuration Management practices
*E.g. sync-n-stabilize; merge early & often

-Build/delivery automation.

«Automated Testing - software does the testing that would
otherwise be done manually.

*Once tests have been automated, they can be run quickly
and repeatedly

I\/” | Sdm Leadership, Innovation, Systems Thinking

AGILE PROJECT DYNAMICS
(APD) MODEL

I\/” | Sdm eeeeeeee ip, Innovation, Systems Thinking

Basis for APD Model

Tarek Abdel-Hamid /Stuart E. Madnick

— SOFTWARE
PROJECT
DYNAMICS

AN INTEGRATED
APPROACH

Cogryrighied Maderial

19

Model of Getting Work Done

Traditional View of Task Accomplishment
PEOPLE PRODUCTIVITY

\ V//‘ DEFECT RATE
~
N

WORK WORK \

BEING DONE DONE \\
Rework added \
to backlog REWORK Some work done \|
REWORK CYCLE is incomplete or ,
TO BE DONE incorrect /
/
_ /
QA, testing, an UNDISCOVERED d
: /
user experience REWORK |\ Errorg-apon-errors
expose problems ~

~ — _ _ — =setond order effect
of unseen defects

but are unseen.
I\/l |—|_Sdm Leadership, Innovation, Systems Thinking ‘ 20

Defects accumulate

High Level SD Model View

—
surcim 3
[P S

s st Cium

\,. et mFCC

[-

/ cu? on schedule

Switch fr Work fom
Relesse o Sprint Backlog

Rebine
ew S

Il«ﬂ o Expercnce
i Prodactny

Staffing

End f Sprint
mzinicg Work
Trans'[:(

p,osaf,_'x g A =
Biomfic Brormio mity . Sprint Work Rate o Work In[:nsu\
- — 7 ¢
e N otk Tims r Pressurz
= Product Backlog Release Backlog - Sprint Backlog Performed in to Eet FCC
Product Backlog Release Planning #~ | -K__bfipﬂm Planning _r‘_“*——ﬁ prml \\ ork Project
Work Generation Work Generation Work A Esh s Lagesd Wotk
Tnitial Product ¥ Generation o T Tnteasity for FCC
Backlog Work \‘\
) Extra Work Requied o
Release Size. For Release Sprint Size
Burm OQut
Sensitivity e Efcr
swonSe of Intznsity on FCC
et o Sprn Sprint Rework
Discovery
. Eﬁxt of Immsm
) TR Sorint Rework v}
F’_f_f/_,-’Discov:rv Rate
- \ Sprint Rework Fraction Correct
. Generation -—— and Complete
MNormal Sprint
Rarwodk Discovary
. Faw o ——— | —
"= Tims to Discover Uﬁgtic;;: :‘;Nd
Time To Discover——" Fevedk 3 > Sprint
Rework in Sprint
print Correct Work [Tadscorered | \ /
Completion Rate Tr Uﬁd‘xuiﬁ 4 "t
E.-Lasi Rework
s : .
Sprint Work v Discovery -T--rEﬁ?}x{iﬁ-jﬁm
- | 7% B SR Errors
Done Consety| pomact Wesk Rate Upon
Efctof Cutoner Esrors
e e, Nomieal FCC
g on oo 4 S Fracnm of Sprint Werk ;
Invobement d Done Correct and Effect of Undiscoverad
U“ Customer : Complete Sprint Rework on FCC
Inyolvement P
/ \ Bllctof Tech
Bkt of Uncerain — DebvonFCC
Requiements on Invobement on Rework

Allow
Refactoring

[— Inproverent i Rework
Uncerainy Bascd on S Dicovry D o Custoer
P oiems

Customer

Tsdm!

Refictoiog
Agressiveress

Continuous
simtegration

v
I“-”{efactormg

Leadership, Innovatio

A Closer Look at the Rework Cycle

\

Work Transfe

Work Transfer

Productivity

Effective Staff

Product X Release % Sprint Tpoet?ée-Yi\(/%::ll(
Backlog Backlog Backlog W . Complete
| ork Being p
A x Done
X \
Work Transfer 1
DIf!ework < I:)I_=lework 1
iscovery Iscovery
PR Rate !
\
Rework
Discovery P 1

Undiscovered v Undiscovered
Rework <€ == Rework (€
in Release in Sprint

Defects Escaping
into Release

-

Product Release
Rate
Fraction Correct
A and Complete

Generation Rate

Delivered
to Product

50

Agile Genes influence the Rework Cycle through key factors

(Productivity, etc.)

LEAdUETSITT » PITTT

Technical Debt In Our Industry

https://pixabay.com/en/worried-paying-bills-man-stressed-30148/

10/1

n n
Sub-Model for Technical Debt and Refactoring
<Release Work Tech Debt Accrued
Technical Debt
Debt on FCC Ay‘ml“{‘te\
Technical Debt <Sprint Work Being
AHOW Accrual Accomplished>
Refactoring
Technical Debt
Technical Debt Pay
Off Amount of Work
<Start of Release
Cycle Event>
) [>~ Planning to pay
Refactoring Work / Down Technical Debt <Sprint Duration>
GenerationRate T <Sprint Size>
Refactoring
' Agressiveness
Planned
-t VAN Refactoring
Allocation of Work
\AREe 4}
s © Leadership, Innovation, Systems Thinking 24

The Greatest Challenge

https://pixabay.com/p-311800/
Debt: www.ccPixs.com

Mb]sm Leadership, Innovation, Systems Thinking 25

tech-ni-cal
/teknak(a)l/

adjective

1. of or relating to a particular subject,
art, or craft, or its techniques.
"technical terms"

2. of, mvolving, or concerned with
applied and industrial sciences.

"an important technical
achievement"

practical, scientific,

SYRonyms: technological, high-tech

Miblsehim

But first, what is Technical Debt?

debt
/det/

noumn

1. something, typically money, that 1s
owed or due.
“I paid off my debts”

2. the state of owing money.
“The firm is heavily in debt”

OWINg MOoNney, In arrears,
synonyms: behind with payments,
overdrawn

Leadership, Innovation, Systems Thinking

Documentation

https://commons.wikimedia.org/wiki/File:Copies_of_documents_at_European_Parliament_in_Strasbourg.jpg

10/1

Obsolescence, COTS/FOSS

https://en.wikipedia.org/wiki/Floppy_disk

Obsolescence - platforms

s

https://en.wikipedia.org/wiki/PAVE_PAWS

https://en.wikipedia.org/wiki/Computer_cluster

https://pixabay.com/en/cloud-computing-future-internet-158481/

1986 2000s 2010s

29

Cybersecurity

. {Ivﬂ T ORE R R |
o g kﬁ;ﬁ\

] LM

-
P
£

N

Copyright © 2016 Raytheon Company

I\/ll | Sdm Leadership, Innovation, Systems Thinking 30

Architectural Debt

1 466 1 574

i . .
Tk i om
g el C%

H

] ISR -t P
2 it e b ol i

: il L T HT -
i [T 20
Propagation cost = 7.7%
46R - : 574

Courtesy of:

:’ f silverthread

Propagation cost = 47.1%

Modularity Hierarchies Layering Commonality

31

The Real Challenge: Understanding the Impact

Cost & schedule overruns

Firm with 130 products & $1.7B revenue

Technical debtin a large codebase
impacts productivity

Developer
productivity
down 60%

20k I 8K I

Well structured
code technical debt

Code with

+ Developersin low-complexity code
2.5X more productive

« Atleast 30FTE/ 12% worth of effort
wasted per year

+ Over $4 milion annual waste

+ 3X defects in complex code

' f silverthread

Source:

System safety

Fortune 100 engineering conglomerate

Technical debtincreased defects found
after a safety-critical system wentlive

High quality Design quality

design degraded
% of fielded
system with 0.63% 13.00%
critical bugs
Dollars spent 12 cents 81cents
fixing critical per LOC per LOC
defects

Security threat

Fortune 50 consumersoftware firm

Technical debt responsible for security
vulnerabilities and higher maint costs

In code with a measurably better

architecture:

* Fewervulnerabilities & defects found

* 10% higher developer productivity
during patch process

* 14% less time to release patches

+ 25% fewer incomplete orincorrect fixes

32

The OODA Loop of Technical Debt Management

Observe

—

Orient

Architecture

Documentation

Code Base

Decide

Understand

<«

33

—

o
=

E«ccumulation of Technical Debt
nd Pay Down via Refactoring

hanagement Dashboard

EXPERIMENTS WITH THE APD MODEL

I\/” | Sdm eeeeeeee ip, Innovation, Systems Thinking

Experiments: Test Parameters and Cases

Project Size = 200,000 tasks (e.g. SLOC or other measures)

Total Staff on Project = 20 people
Nominal Productivity = 200 tasks per-week, per-person

Nominal Fraction Correct and Complete = 80%
Relative Effectiveness of New Staff = 20%
Number of Releases (if Agile) = 1 release
Sprint duration (if Agile) = 4 weeks

Expected Cost= 200,000 tasks

Expected Duration = 50 Weeks

<

Customer . lterative/ . Pair
Feature Continuous Micro-
Case Name] Involve- . Incremental | Refactor - Program-
Driven Integration Optimize :
ment ming
Cise Tra‘:lt'on OFF | OFF OFF OFF | OFF | OFF | OFF
Czse Scrum | ON OFF OFF ON OFF | ON | OFF
N_/

ership, Innovation,

Systems Thinking ‘

37

Case 1 - Traditional

200,000 task

100,000 task

0 task

Sprint Backlog

Schedule (Backlogs)

Time to
Complete
65 weeks

Product Backlog

0 16 32 48 64 80 96

Time (Week)

Release Backlog

task

Quality (Defects in Product)
2,000 task

1,000 task

0 task

0 32 64 96
Time (Week)

Defects task
Dev Finished Dmnl

task
task

Project Performance

Schedule

(weeks)

Development Defect
Effort Discovery
(tasks) (weeks)

- 65 EEPEE 24

Ml lsdm

CPl | SPI
0.89(0.77

Cost (Development Effort Spent)
400,000

% 200,000
0
0 24 48 72 96
Time (Week)
Development Effort

Bain 1 en e I

1 e Py P RPI W, o PR P
e e ST o Y e o Y S e S e

Frg

Case 2 - Scrum

Schedule (Backlogs)
200,000 task .
Time to
complete
99,800 task 50 weeks
400 task /
0 16 32 48 64 80 96
Time (Week)
Product Backlog
Release Backlog
Sprint Backlog

task
task
task

Quality (Defects in Product)

4,000 task
1 Dmnl

2,000 task
0.5 Dmnl

0 task
0 Dmnl

0 32 64 96
Time (Week)

Defects task
Dev Finished Dnnl

Project Performance

Schedule Development Defect
(weeks) Effort Discovery
(tasks) (weeks)
50 PRI 13
CPl | SPI

Ml lsdm

0.84| 1

Cost (Development Effort Spent)
400,000

task

200,000

0 24 48 72 96
Time (Week)

Other Variations

Schedule (Backlogs)

200,000 task Multiple
Releases

99,900 task i

200 task
l

0 16 32 48 64 80 96

Time (Week)
Product Backlog task
Release Backlog task
Sprint Backlog task

There are many other variations of genes and policy
\, variable combinations possible.

1T TP GART T R [Leadership, Innovation, Systems Thinking

40

mpacts of Funding Fluctuations

person

Staffing Data Rate Of Development
40 6,000
30 4,500
9}
20 Z 3,000 /
g
10
\\\Hmmﬁ‘m‘k 1,500
0 ||
0 16 32

48 64 80 96 0

Time (Week) o 16 32 48 1 80 96
Exoesionecd Sl eument v Time (Wee
Egg::ifsa;;ﬁc;nazne;_ZfExpeﬁence : cur ar Rate Of D Dpnlent
Funding Ramp-up Gap
Gap Tax Tax

Model also used to understand the impact of budget cuts
and fluctuations

‘41

CONCLUSION

I\/” | Sdm eeeeeeee ip, Innovation, Systems Thinking

How the Agile Dynamics Model Helps

« What do people really mean by “Agile”?
— Agile Genome captures the “essence of Agile” 7 genes.

— APD models how the genes work individually and in combination to
produce emergent system behaviors -- the enterprise/system
properties are not a sum of the parts, but a product of their
interactions.

« Why the variations in results?

— Model shows variations from different combinations of genes and
exogenous factors.

— Some results are worse than traditional waterfall. Many are better.

- What are management options and implications?

— Even within a tightly constraining acquisition process, strategic use
of Agile genes can be beneficial.

I\/” | Sdm Leadership, Innovation, Systems Thinking

Insights Gained

* The developed product itself is part of the system under
study, in addition to the people, processes, and tools and the
Interactions thereof.

— True Agility is not only reflective of the agility of the team or Lean-
ness of the process, but also of the flexibility of system being
developed.

« APD suggest that, to gain the full benefits of Agile, one
cannot simply cherry-pick easy-to-adopt development
techniques and hope to achieve improved project
performance.

Mb]sm Leadership, Innovation, Systems Thinking

Insights Gained (cont)

« Each practice/policy can have positive and negative effects.

 The trick: configure the system (program) to maximizes up-
side / minimize downside. (“Genetic Program Engineering”)

Examples:

Incremental development-> Technical Debt &13 Refactoring

Refactoring—>Productivity Loss 513 Continuous Integration

Mb]sm Leadership, Innovation, Systems Thinking

Next Steps

Gather feedback and revise model elements. (The model

evolves iteratively/incrementally).
Operationalize the model by mapping model variables to

available metrics of parameters, policy choices, and
results of past projects.

Validation: Test, calibrate, and update the model based

on comparison of actual project data to model
predictions.

Transition validated and calibrated model for use in

acquisition/development for strategic project
management

MITRE and MIT are working on validating the model

against real cases and potentially extending the model.

I\/” | Sdm ‘ Leadership, Innovation, Systems Thinking

THANK YOU

For more info, see Agile Project Dynamics Whitepaper:
http://ic3.mit.edu/ResearchSamples/2013-05.pdf

Firas Glaiel firas@raytheon.com

Special thanks to contributors:
Allen Moulton

Prof Stuart Madnick

and the MIT Interdisciplinary Consortium for Improving Critical
Infrastructure Cybersecurity (IC)?

| NTERDISCIPLINARY
CONSORTIUM
SEIMPROVING
CRITICAL
| NFRASTRUCTURE (’C)3
CYBERSECURITY

I\/ll | Sdm Leadership, Innovation, Systems Thinking ‘ 47

