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CONTEXT
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Encouraging Reports About “Agile”

The Problem

• Traditional large-scale software 
engineering: plan-oriented, 
process-heavy, gated, slow, 
costly, risk averse.

• Focus on risk management 
“iron triangle” of cost-scope-
schedule rather than customer 
satisfaction.

• Requirements often 
overtaken by events 
(technology change, mission 
needs change, leadership 
change).

• Not new. 1982 C2 Acquisition 
Study recommended “buy a 
little, test a little” to minimize 
overall exposure and risk.

Agile as a Solution?

• Published studies of Agile 
show:

– Cost decreases of 5% to 61%
– Development time decreases of 

24% to 58%
– Cumulative defects decreases 

of 11% to 83%

• BUT (Important Questions)
– What do people really 

mean by “Agile”?
– Why the variations in 

results?
– What are management 

acquisitions options and 
implications?
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Generic DoD Acquisition Process
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• Personnel Rotation – about every 3 years

Technology ChangeTechnology ChangeTechnology Change Technology Change Technology Change Technology Change

• Technology Changes about every 2 years

*Reference: Mar 2009 DSB Report 
Not Efficient or 

Effective For DoD 
Acquisition

Source: “Acquisition of Information Technology” briefing by Ronald Pontius, Director, Command and Control, 

OUSD (Acquisition, Technology & Logistics), March 20, 2012. 5



AGILE GENOME FRAMEWORK
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Source: Forrester Report, July 2010: “Water-Scrum-Fall Is The Reality Of Agile For Most Organizations Today”

Survey of Agile Methodologies
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The Agile Genome
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Feature Driven

Iterative & Incremental

(Workload Management)

Refactoring

Micro-Optimization

Customer Involvement

Continuous Integration

(Development Management)

Team Dynamics

(Soft Factors)

The ‘essence’ of Agile captured in these 7 Genes



Gene 1: Feature driven

” Working software over Comprehensive documentation”
Working software is the primary measure of progress

• Break up of project into manageable pieces of functionality:
• sometimes called “features”, “stories”, “use cases”, or 

“threads”
• As opposed to functional decomposition

•The feature is a small, client-valued function.

•The final software product is the collection of all features.
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Gene 2: Iterative-Incremental
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Gene 3: Refactoring
•An incremental process can produce sub-optimal results 
compared to a waterfall model where complete up-front 

design is optimized for a full-featured release.

•Many agile methodologies (in particular XP) consider 

refactoring to be a primary development practice. 

•Refactoring needed to pay off the “technical/design debt” 

•Refactoring has the disadvantage that it takes extra effort 

and requires changing the software. 
•Any change has the potential to reduce maturity and stability. That’s 
why refactoring is usually paired up with Continuous Integration.



Gene 4: Micro-Optimizing

•“Optimizing”: teams are empowered to modify aspects of
the process or dynamically adapt to changing

circumstances.

•“Micro”: small improvements and variable changes are

made frequently and as needed. E.g. team gradually figures

out how many “story points” they can handle in a time-box.

• Double-loop learning: an individual, organization or entity

is able, having attempted to achieve a goal on different
occasions, to modify the goal in the light of experience or

possibly even reject the goal.



Gene 5: Customer Involvement
-Feature demos help identify rework in completed tasks: higher rework discovery rate.
-Higher frequency of user feedback reduces requirements uncertainty

Why Software Projects Fail



Gene 6: Team Dynamics

•Schedule pressure at the end of each iteration leads to 
higher work intensity. Short iterations means schedule 

pressure happens more frequently

• Higher frequency of communication increases the rate of 

gaining experience and reduces time to discover rework.

•Practices such as pair programming reduce defects 
(increased fraction correct and complete)

•Experience Gain / Learning :

• Project learning
• Process learning

• People learning



Gene 7: Continuous Integration

•Software Configuration Management practices 
•E.g. sync-n-stabilize; merge early & often

•Build/delivery automation.

•Automated Testing - software does the testing that would 
otherwise be done manually. 

•Once tests have been automated, they can be run quickly 
and repeatedly



AGILE PROJECT DYNAMICS 
(APD) MODEL
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High Level SD Model View
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A Closer Look at the Rework Cycle
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Technical Debt In Our Industry

10/1
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https://pixabay.com/en/worried-paying-bills-man-stressed-30148/
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Sub-Model for Technical Debt and Refactoring
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The Greatest Challenge

https://pixabay.com/p-311800/
Debt: www.ccPixs.com



But first, what is Technical Debt?
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Documentation

10/1
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https://commons.wikimedia.org/wiki/File:Copies_of_documents_at_European_Parliament_in_Strasbourg.jpg



Obsolescence, COTS/FOSS
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https://en.wikipedia.org/wiki/Floppy_disk



Obsolescence - platforms
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1986 2000s

https://en.wikipedia.org/wiki/PAVE_PAWS https://en.wikipedia.org/wiki/Computer_cluster

https://pixabay.com/en/cloud-computing-future-internet-158481/

2010s



Cybersecurity
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Architectural Debt

31

Courtesy of:



The Real Challenge: Understanding the Impact
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The OODA Loop of Technical Debt Management

10/1
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Observe Orient Decide Act
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Management Dashboard
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EXPERIMENTS WITH THE APD MODEL
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Experiments: Test Parameters and Cases

Project Size = 200,000 tasks (e.g. SLOC or other measures)

Total Staff on Project = 20 people

Nominal Productivity = 200 tasks per-week, per-person

Nominal Fraction Correct and Complete = 80%

Relative Effectiveness of New Staff = 20%

Number of Releases (if Agile) = 1 release

Sprint duration (if Agile) = 4 weeks
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2
Scrum ON OFF OFF ON OFF ON OFF
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Schedule (Backlogs)
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Case 2 - Scrum
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Other Variations
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There are many other variations of genes and policy 
variable combinations possible.
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Impacts of Funding Fluctuations
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Model also used to understand the impact of budget cuts 
and fluctuations 

Staffing Data
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CONCLUSION
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How the Agile Dynamics Model Helps 

• What do people really mean by “Agile”?

– Agile Genome captures the “essence of Agile” 7 genes.

– APD models how the genes work individually and in combination to 
produce emergent system behaviors -- the enterprise/system 
properties are not a sum of the parts, but a product of their 
interactions.

• Why the variations in results?

– Model shows variations from different combinations of genes and 
exogenous factors.

– Some results are worse than traditional waterfall. Many are better.

• What are management options and implications?

– Even within a tightly constraining acquisition process, strategic use 
of Agile genes can be beneficial.
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Insights Gained

• The developed product itself is part of the system under 
study, in addition to the people, processes, and tools and the 
interactions thereof. 

– True Agility is not only reflective of the agility of the team or Lean-
ness of the process, but also of the flexibility of system being 
developed.

• APD suggest that, to gain the full benefits of Agile, one 
cannot simply cherry-pick easy-to-adopt development 
techniques and hope to achieve improved project 
performance. 
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Incremental development�Technical Debt         Refactoring

Refactoring�Productivity Loss Continuous Integration

Insights Gained (cont)

• Each practice/policy can have positive and negative effects.

• The trick: configure the system (program) to maximizes up-
side / minimize downside. (“Genetic Program Engineering”)

Examples:
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Next Steps

• Gather feedback and revise model elements. (The model 
evolves iteratively/incrementally).

• Operationalize the model by mapping model variables to 
available metrics of parameters, policy choices, and 
results of past projects.

• Validation: Test, calibrate, and update the model based 
on comparison of actual project data to model 
predictions.

• Transition validated and calibrated model for use in 
acquisition/development for strategic project 
management

• MITRE and MIT are working on validating the model 
against real cases and potentially extending the model.
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THANK YOU
For more info, see Agile Project Dynamics Whitepaper:
http://ic3.mit.edu/ResearchSamples/2013-05.pdf

Firas Glaiel firas@raytheon.com
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Allen Moulton
Prof Stuart Madnick
and the MIT Interdisciplinary Consortium for Improving Critical 
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