
system design &
management

Agile Project Dynamics for Aerospace and Defense
Technologies Plus Lessons for Other Sectors

Firas Glaiel

Software Engineering Tech Staff
Integrated Defense Systems

Raytheon

Agenda

• Context

• Agile Genome Framework

• Agile Project Dynamics (APD) Model

• Experiments with the APD Model

• Insights and Next Steps

2

CONTEXT

3

Encouraging Reports About “Agile”

The Problem

• Traditional large-scale software
engineering: plan-oriented,
process-heavy, gated, slow,
costly, risk averse.

• Focus on risk management
“iron triangle” of cost-scope-
schedule rather than customer
satisfaction.

• Requirements often
overtaken by events
(technology change, mission
needs change, leadership
change).

• Not new. 1982 C2 Acquisition
Study recommended “buy a
little, test a little” to minimize
overall exposure and risk.

Agile as a Solution?

• Published studies of Agile
show:

– Cost decreases of 5% to 61%
– Development time decreases of

24% to 58%
– Cumulative defects decreases

of 11% to 83%

• BUT (Important Questions)
– What do people really

mean by “Agile”?
– Why the variations in

results?
– What are management

acquisitions options and
implications?

4

Generic DoD Acquisition Process

Product

Delivered
User need

identified

Product

Delivered
Personnel

rotation

Personnel

rotation

Personnel

rotation

Personnel

rotation

• Personnel Rotation – about every 3 years

Technology ChangeTechnology ChangeTechnology Change Technology Change Technology Change Technology Change

• Technology Changes about every 2 years

*Reference: Mar 2009 DSB Report
Not Efficient or

Effective For DoD
Acquisition

Source: “Acquisition of Information Technology” briefing by Ronald Pontius, Director, Command and Control,

OUSD (Acquisition, Technology & Logistics), March 20, 2012. 5

AGILE GENOME FRAMEWORK

6

Source: Forrester Report, July 2010: “Water-Scrum-Fall Is The Reality Of Agile For Most Organizations Today”

Survey of Agile Methodologies

7

The Agile Genome

8

Feature Driven

Iterative & Incremental

(Workload Management)

Refactoring

Micro-Optimization

Customer Involvement

Continuous Integration

(Development Management)

Team Dynamics

(Soft Factors)

The ‘essence’ of Agile captured in these 7 Genes

Gene 1: Feature driven

” Working software over Comprehensive documentation”
Working software is the primary measure of progress

• Break up of project into manageable pieces of functionality:
• sometimes called “features”, “stories”, “use cases”, or

“threads”
• As opposed to functional decomposition

•The feature is a small, client-valued function.

•The final software product is the collection of all features.

Product
Backlog

Gene 2: Iterative-Incremental
Architecting system as a set of features is what allows for incremental and iterative

development.

R
e

le
a

s
e

B
a

c
k
lo

g

Feature 4

Feature 5

Sprint
Backlog

Feature 6

Feature 7

Feature 8

Feature 9

Feature 10

Feature 4

Feature 5

tasktask
tasktask
tasktask

Product

Feature 1

Feature 2

tasktask
tasktask
tasktask

Sprint
Planning

Daily
Scrum

Sprint 1
Increment

Feature 3

Feature 5

Feature 4
Sprint 2
Increment

Release
x.x

“Working software over Comprehensive documentation”
Deliver working software frequently, from a couple of weeks

to a couple of months.

ATM
Requirements

User Interface

Requirements

DB
Requirements

HW Controller
Requirements

Design

Design

Design

Module A.1Module A.1
Implementatio

nModule A.2Module A.2
Implementatio

nModule A.n
Implementation

Module B.1Module B.1
Implementatio

nModule B.2
ImplementationModule B.n

Implementation

Module C.1Module C.1
Implementatio

nModule C.2
ImplementationModule C.n

Implementation

UI
Subsystem

Impl

DB
Subsystem

Impl

HW Controller
Impl

Integrated
ATM
S/W

ICD/IRS

ICD/IRS

Analysis Requirements Specs Design Code U.T. SWIT SYS Int

Waterfall (BDUF) Walk-through

1
1

Feature 1
Check Balance

Agile Walk-through

Feature 2
Withdraw Cash

Feature 3
Deposit Check

Feature 4
Deposit Cash

Feature 5
Transfer

Product
Backlog

Sprint
Planning

Sprint
Backlog

Feature 1
Check Balance

Feature 2
Withdraw Cash

Feature 1
Check Balance

Feature 2
Withdraw Cash

Sprint

3-4 weeks

24 hrs

Shippable
Product

Increment

ATM

Requirements

Gene 3: Refactoring
•An incremental process can produce sub-optimal results
compared to a waterfall model where complete up-front

design is optimized for a full-featured release.

•Many agile methodologies (in particular XP) consider

refactoring to be a primary development practice.

•Refactoring needed to pay off the “technical/design debt”

•Refactoring has the disadvantage that it takes extra effort

and requires changing the software.
•Any change has the potential to reduce maturity and stability. That’s
why refactoring is usually paired up with Continuous Integration.

Gene 4: Micro-Optimizing

•“Optimizing”: teams are empowered to modify aspects of
the process or dynamically adapt to changing

circumstances.

•“Micro”: small improvements and variable changes are

made frequently and as needed. E.g. team gradually figures

out how many “story points” they can handle in a time-box.

• Double-loop learning: an individual, organization or entity

is able, having attempted to achieve a goal on different
occasions, to modify the goal in the light of experience or

possibly even reject the goal.

Gene 5: Customer Involvement
-Feature demos help identify rework in completed tasks: higher rework discovery rate.
-Higher frequency of user feedback reduces requirements uncertainty

Why Software Projects Fail

Gene 6: Team Dynamics

•Schedule pressure at the end of each iteration leads to
higher work intensity. Short iterations means schedule

pressure happens more frequently

• Higher frequency of communication increases the rate of

gaining experience and reduces time to discover rework.

•Practices such as pair programming reduce defects
(increased fraction correct and complete)

•Experience Gain / Learning :

• Project learning
• Process learning

• People learning

Gene 7: Continuous Integration

•Software Configuration Management practices
•E.g. sync-n-stabilize; merge early & often

•Build/delivery automation.

•Automated Testing - software does the testing that would
otherwise be done manually.

•Once tests have been automated, they can be run quickly
and repeatedly

AGILE PROJECT DYNAMICS
(APD) MODEL

18

19

Basis for APD Model

Agile
Genome

WORK

BEING DONE

PEOPLE PRODUCTIVITY

WORK
TO BE
DONE

WORK
DONE

Traditional View of Task Accomplishment

Model of Getting Work Done

UNDISCOVERED
REWORK

Some work done

is incomplete or

incorrect

Defects accumulate

but are unseen.

QA, testing, and

user experience

expose problems

Rework added

to backlog REWORK
CYCLE

20

DEFECT RATE

Errors-upon-errors

second order effect

of unseen defects

REWORK
TO BE DONE

High Level SD Model View

21

Staffing

New Staff Experienced
Staff

Staff Gaining

Experience

Initial

Inexperienced
Staff

Time to Gain

Experience

Initial

Experienced
Staff

Effect of Experience

on Productivity

Relative Experience

of New Staff

Staff

<Effect of PP on

Experience Gain>

Nominal Time to

Gain Experience
In Waterfall

Staff Churn

Rate
Percent of Team

Change Per Sprint

<Effective Sprint

Duration>

Exp Staff ChurnInexp Staff Churn

Effect of

Experience on FCC

Nominal Time to Gain

Experience In Agile

<Switch for

Waterfall>

<Switch for Waterfall>

Effective Staff Based

on Experience

Refactoring

Allow
Refactoring

Technical Debt

Technical Debt

Accrual

Planned
Refactoring

Work

Planning to pay

Down Technical Debt

<Sprint Size><TIME STEP>

Allocation of
Refactoring to

Release

Refactoring Work

Generation Rate

Technical Debt Pay

Off Amount of Work

Refactoring

Agressiveness

Technical Debt

Accrual Rate

Tech Debt Accrued
per unit of Work

Effect of Tech

Debt on FCC

<Start of Release

Cycle Event>

<Sprint Duration>

<Release Work

Done Correctly>

<Sprint Work Being

Accomplished>

Continuous
Integration

Allow Continuous
Integration

Continuous

Integration Setup

Work

Number of Tasks to

Setup CI Environment

Time to set up
CI

Staff to set up

CI

CI setup work rate

CI Setup Work

Generation Rate

<Current Release ID>

<Current Sprint ID>

<TIME STEP>

CI Environment

Available

Effect of CI on Rework

Discovery Rate

<InRelease>

Level of Automated
Testing Used

CM and Build
Environement

Automation Level

Effect of Automated

Testing on Rework
Discovery

Effect of CM

Environment on

Rework Discovery

Effect of CI on

Productivity

Effect of Test

Automation on Pdy

Effect of CM

Environment on Pdy

<Nominal

Productivity>

Team

Dynamics

Sprint Backlog
Work

Performed in
ProjectSprint Work

Being
Accomplished

Undiscovered
Rework in

Sprint

Sprint Rework

Generation

Fraction Correct
and Complete

Sprint Rework

Discovery

Effort
Remaining in

Sprint

Time to Perceive

Sched Pressure

Schedule PressureDevelopers needed to

complete on schedule

Normal Work

Intensity

Max Work Intensity

Work Intensity

Effective Staff based

on Work Intensity

Working

Harder at

End of

Sprint

Lagged Work

Intensity for FCC

Time for Pressure

to Effect FCC

Effect of Intensity

on FCC

Sensitivity for Effect

of Intensity on FCC

<TIME STEP>

<Staff>

<Productivity>

<Number of Team

Meetings per week>

Sprint Work Rate

Haste

Makes

Watse

Burn Out

<Switch for

Waterfall>

<Sprint In Progress>

<Sprint In Progress>

Micro

Optimization

Allow Micro
Optimization

Initial Sprint Size

Ideal Sprint Size

Sprint Size Decrease<TIME STEP>

Sprint Size Gap at

end of Sprint

<Sprint End Event>

<Current Sprint ID>

Improvement in FCC
based on Sprints

Completed

<Sprint End

Counter>

Improvement in Pdy
based on Sprints

Completed

Improvement in Rework
Discovery based on Sprints

Completed

Effect of MO on FCC Effect of MO on Pdy Effect of MO on

Rework Discovery

one sprint

<Effective Sprint

Duration>

<Sprint Backlog>

<Staff>

<Time Left In Sprint>

Extra

Bandwidth
sprint size

increase rate

<Productivity>

Sprint Size

Increase
<TIME STEP>

<Current Sprint ID>

<Switch for
Waterfall>

<Release Size>Sprints Per

Release

<Release Cycle

Duration>

<Sprint In Progress>

Sensitivity for

Effects of MO

Allow Customer

Involvement

<Fraction of Sprint Work

Believed Done Correct and
Complete>

Elimination of Requirements
Uncertainty Based on Sprint

Progress

Max Effect of
Requirements
Uncertainty

Effect of Uncertain
Requirements on

FCC

<Number of Team

Meetings per week>

Improvement in Rework
Discovery Due to Customer

Involvement

Effect of Customer
Involvement on Rework

Discovery Time

Max Effect of Customer
Involvement on Rework

Discovery Time

Fraction of Release

Work Completed

<Release

Backlog>

<Release Size> <InRelease>

Effect of Customer
Involvement on

Requirements ChurnSensitivity for the Effect of
CustInv on Requirements

Churn

Requirements Churn Rate
Based on Customer

Involvement

Customer
Involvement

A Closer Look at the Rework Cycle

22

Rework
Discovery

Product
Backlog

Release
Backlog

Sprint
Backlog

Total Work
Perceived
CompleteWork Being

Done

Work Transfer Work Transfer

Work Transfer

Undiscovered
Rework
in Sprint

Undiscovered
Rework

in Release

Rework
Discovery

Defects Escaping
into Release

Rework
Generation Rate

Delivered
to Product

Agile Genes influence the Rework Cycle through key factors
(Productivity, etc.)

Fraction Correct
and Complete

Product Release
Rate

Rework
Discovery

Rate

Productivity Effective Staff

Technical Debt In Our Industry

10/1
23

https://pixabay.com/en/worried-paying-bills-man-stressed-30148/

Allow
Refactoring

Technical Debt

Technical Debt

Accrual

Planned
Refactoring

Work

Planning to pay

Down Technical Debt

<Sprint Size><TIME STEP>

Allocation of
Refactoring to

Release

Refactoring Work

Generation Rate

Technical Debt Pay

Off Amount of Work

Refactoring

Agressiveness

Technical Debt

Accrual Rate

Tech Debt Accrued

per unit of Work

Effect of Tech

Debt on FCC

<Start of Release

Cycle Event>

<Sprint Duration>

<Release Work

Done Correctly>

<Sprint Work Being

Accomplished>

How much

debt are we

accumulating?

When do we

decide to

refactor?

Planned

refactoring goes

into Release

Effect on
Project

24

Sub-Model for Technical Debt and Refactoring

10/17/2016 25

The Greatest Challenge

https://pixabay.com/p-311800/
Debt: www.ccPixs.com

But first, what is Technical Debt?

10/17/2016 26

Documentation

10/1
27

https://commons.wikimedia.org/wiki/File:Copies_of_documents_at_European_Parliament_in_Strasbourg.jpg

Obsolescence, COTS/FOSS

28

https://en.wikipedia.org/wiki/Floppy_disk

Obsolescence - platforms

29

1986 2000s

https://en.wikipedia.org/wiki/PAVE_PAWS https://en.wikipedia.org/wiki/Computer_cluster

https://pixabay.com/en/cloud-computing-future-internet-158481/

2010s

Cybersecurity

30

Copyright © 2016 Raytheon Company

Architectural Debt

31

Courtesy of:

The Real Challenge: Understanding the Impact

32

Source:

The OODA Loop of Technical Debt Management

10/1
33

Observe Orient Decide Act

Technical Debt

20,000

15,000

10,000

5,000

0

0 16 32 48 64 80 96

Time (Week)

ta
sk

Technical Debt : Case 2

Technical Debt : Case 3

w/o TDM

w/ TDM

Accumulation of Technical Debt
and Pay Down via Refactoring

34

Technical Debt

200

150

100

50

0

0 26 52 78 104 130 156 182

Time (Week)

ta
sk

Technical Debt : Current

Technical Debt Pay Off Amount of Work : Current

Management Dashboard

Schedule

Quality

Cost

Policy
Levers

Project Parameters
35

EXPERIMENTS WITH THE APD MODEL

36

Experiments: Test Parameters and Cases

Project Size = 200,000 tasks (e.g. SLOC or other measures)

Total Staff on Project = 20 people

Nominal Productivity = 200 tasks per-week, per-person

Nominal Fraction Correct and Complete = 80%

Relative Effectiveness of New Staff = 20%

Number of Releases (if Agile) = 1 release

Sprint duration (if Agile) = 4 weeks

Case Name
Feature

Driven

Customer

Involve-

ment

Continuous

Integration

Iterative/

Incremental Refactor
Micro-

Optimize

Pair

Program-

ming

Case

1

Tradition

al
OFF OFF OFF OFF OFF OFF OFF

Case

2
Scrum ON OFF OFF ON OFF ON OFF

37

Expected Cost= 200,000 tasks Expected Duration = 50 Weeks

Schedule (Backlogs)

200,000 task

1 Dmnl

100,000 task

0.5 Dmnl

0 task

0 Dmnl

0 16 32 48 64 80 96

Time (Week)

Product Backlog task

Release Backlog task

Sprint Backlog task

Dev End Dmnl

Case 1 - Traditional

Project Performance

Schedule
(weeks)

Development

Effort
(tasks)

Defect

Discovery
(weeks)

65 223000 24

38

Time to
Complete
65 weeks

CPI SPI

0.89 0.77

Quality (Defects in Product)

2,000 task

1 Dmnl

1,000 task

0.5 Dmnl

0 task

0 Dmnl

0 32 64 96

Time (Week)

Defects task

Dev Finished Dmnl

Cost (Development Effort Spent)

400,000

200,000

0

0 24 48 72 96

Time (Week)

ta
sk

Development Effort

Case 2 - Scrum

Project Performance

Schedule
(weeks)

Development

Effort
(tasks)

Defect
Discovery
(weeks)

50 236000 13

39

CPI SPI

0.84 1

Quality (Defects in Product)

4,000 task

1 Dmnl

2,000 task

0.5 Dmnl

0 task

0 Dmnl

0 32 64 96

Time (Week)

Defects task

Dev Finished Dmnl

Cost (Development Effort Spent)

400,000

200,000

0

0 24 48 72 96

Time (Week)

ta
sk

Development Effort

Schedule (Backlogs)

200,000 task

1 Dmnl

99,800 task

0.5 Dmnl

-400 task

0 Dmnl

0 16 32 48 64 80 96

Time (Week)

Product Backlog task

Release Backlog task

Sprint Backlog task

Dev End Dmnl

Time to
complete
50 weeks

Other Variations

40

There are many other variations of genes and policy
variable combinations possible.

Schedule (Backlogs)

200,000 task

1 Dmnl

99,900 task

0.5 Dmnl

-200 task

0 Dmnl

0 16 32 48 64 80 96

Time (Week)

Product Backlog task

Release Backlog task

Sprint Backlog task

Dev End Dmnl

Multiple
Releases

Impacts of Funding Fluctuations

41

Model also used to understand the impact of budget cuts
and fluctuations

Staffing Data

40

30

20

10

0

0 16 32 48 64 80 96

Time (Week)

p
er

so
n

New Staff : current_var

Experienced Staff : current_var

Total Staff : current_var

Effective Staff Based on Experience : current_var

Rate Of Development

6,000

4,500

3,000

1,500

0

0 16 32 48 64 80 96

Time (Week)

ta
sk

/W
ee

k

Rate Of Development

Gap

Tax
Ramp-up

Tax
Funding

Gap

CONCLUSION

42

How the Agile Dynamics Model Helps

• What do people really mean by “Agile”?

– Agile Genome captures the “essence of Agile” 7 genes.

– APD models how the genes work individually and in combination to
produce emergent system behaviors -- the enterprise/system
properties are not a sum of the parts, but a product of their
interactions.

• Why the variations in results?

– Model shows variations from different combinations of genes and
exogenous factors.

– Some results are worse than traditional waterfall. Many are better.

• What are management options and implications?

– Even within a tightly constraining acquisition process, strategic use
of Agile genes can be beneficial.

43

Insights Gained

• The developed product itself is part of the system under
study, in addition to the people, processes, and tools and the
interactions thereof.

– True Agility is not only reflective of the agility of the team or Lean-
ness of the process, but also of the flexibility of system being
developed.

• APD suggest that, to gain the full benefits of Agile, one
cannot simply cherry-pick easy-to-adopt development
techniques and hope to achieve improved project
performance.

10/17/2016 44

Incremental development�Technical Debt Refactoring

Refactoring�Productivity Loss Continuous Integration

Insights Gained (cont)

• Each practice/policy can have positive and negative effects.

• The trick: configure the system (program) to maximizes up-
side / minimize downside. (“Genetic Program Engineering”)

Examples:

10/17/2016 45

Next Steps

• Gather feedback and revise model elements. (The model
evolves iteratively/incrementally).

• Operationalize the model by mapping model variables to
available metrics of parameters, policy choices, and
results of past projects.

• Validation: Test, calibrate, and update the model based
on comparison of actual project data to model
predictions.

• Transition validated and calibrated model for use in
acquisition/development for strategic project
management

• MITRE and MIT are working on validating the model
against real cases and potentially extending the model.

46

THANK YOU
For more info, see Agile Project Dynamics Whitepaper:
http://ic3.mit.edu/ResearchSamples/2013-05.pdf

Firas Glaiel firas@raytheon.com

Special thanks to contributors:
Allen Moulton
Prof Stuart Madnick
and the MIT Interdisciplinary Consortium for Improving Critical
Infrastructure Cybersecurity (IC)3

47

